If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)-(32x)+8=0
a = 2; b = -32; c = +8;
Δ = b2-4ac
Δ = -322-4·2·8
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{15}}{2*2}=\frac{32-8\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{15}}{2*2}=\frac{32+8\sqrt{15}}{4} $
| 4(x+28)=x3 | | 3r=7/9 | | 3r=79 | | 7x=1+15× | | 375=2500(1+0.25t) | | a/200+10=35 | | 3x+1=157 | | 2.4x-3=3(1+0.4x) | | 2x-4÷3+x=4 | | 1+-5=7-6x | | X^2-8=4-x | | X^3-2x-40=0 | | 8(3x-2)=2(12x-5) | | 4/5=2x/15 | | 3x+10=112 | | 1/x-3/4=3/8 | | -x+36=2x+17 | | 3x=x^2+12 | | 0.6x=-5 | | 10+30x=36x | | x2+2x-3(x-1)=28 | | 6w+5=-13 | | 5x/9=x/2 | | 46=-2j+28 | | 9x+5=19-7x | | 15x-4x=-25-8 | | 22+x=80 | | a/10=-16 | | 5/3=2/x | | (x+25)(x+50)=1650 | | 10x+136=-8-2 | | -870=30n |